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ABSTRACT: Considering the challenges of grid integration, battery systems could be used to smooth the infeed of 
PV systems. This paper presents autonomous forecast-based operation strategies for residential PV battery systems 
that can be used to improve grid integration of PV systems. Simulation calculations on a timescale of one minute 
were performed to determine the impact of error-prone forecasts of the PV generation and load demand. Like load 
forecasts which need to be calculated on-site, also PV forecasts can be autonomously derived from measurements to 
avoid costs from forecast services. For the purpose of dealing with forecast errors a model predictive controller is 
implemented which can compensate the essential undesired effects of forecast errors. In this paper basic forecast 
approaches were assessed to show that even simple prediction models result in an economic feasible and autonomous 
grid relieving operation of residential PV battery systems. 
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1 MOTIVATION 

 
As feed-in tariffs decrease faster than the levelized 

costs of PV generated electricity in many countries, new 
operational concepts for photovoltaic (PV) systems are 
needed. A potentially huge market could be the on-site 
consumption of locally generated PV power. Because 
local demand and PV generation are limited in 
simultaneity with regard to their diurnal and seasonal 
course, storages could increase the usage on-site by 
storing surplus PV energy for later consumption. 
Furthermore, battery storages could play a major role for 
grid integration of renewables and especially residential 
PV [1,2]. The majority of PV systems is connected to the 
low voltage grid so that the avoidance of voltage rises is 
the crucial issue for PV grid integration [3,4]. In order to 
develop promising operation strategies for residential PV 
battery systems recent work gives a wide spectrum of 
approaches. Most authors agree on one point: PV 
batteries will not relieve the grid, as they will be fully 
charged as soon as possible, often before feed-in 
reduction is necessary [1–10].  

Moreover many causes for peak shaving applications 
from a grid operator’s point of view have been identified 
in recent work [1–10]. Hence the reduction of feed-in to a 
certain amount of power is mandatory in Germany. 
However the feed-in limitation through curtailment leads 
to unnecessary losses whereas curtailment occurs when 
energy could be fed into the grid with power above the 
mandatory feed-in limit. To eliminate this drawback of 
that nowadays conventional operation, forecast-based 
operation strategies were proposed, which fulfills the 
balancing act of peak shaving feed-in, increasing the self-
sufficiency on-site and avoiding curtailment as illustrated 
schematically in Figure 1.  

The previously published studies differ in their 
forecast assumptions; some use perfect forecasts for 
investigation [1,5,6], others synthetic forecasts (modified 
measured time series) [2,7] or forecasts by 
meteorological services [9,11,12]. Finally there are 
studies that use simple persistence models such as [10] or 
more complex models such as [2,13,14]. For that reason 
the results are not overall comparable. While perfect 
forecasts contribute to a conceptual development 

showing possible gains from different approaches, error-
prone forecasts become necessary for the implementation 
of forecast algorithms in real PV battery systems.  

Autonomous forecasts, based on measurements are 
freely available, in contrast to forecasts of meteorological 
services. Nevertheless implementation constraints could 
arise from a lack of knowledge. Therefore simple but 
accurate approaches are in favor and need to be 
developed. This paper shows how residential PV battery 
systems could be easily equipped with autonomous 
forecasts to relieve the grid without additional costs. 
 

 
Figure 1: Schematic representation of different operation 
strategies 
 
2 MODEL DESCRIPTON 

2.1 System model and input data 
The system model investigated in this paper can be 

described with four components: input data, a PV- and 
battery model and finally the control scheme. The input 
data to simulate the PV system is based on measurements 
of the diffuse and global irradiance as well as ambient 
temperature from 25 weather stations recorded by the 
German weather service (DWD) in 2013. The temporal 
resolution of the irradiance data is one minute and ten 
minutes for the temperature data. For the case study in 
this paper the meteorological observatory Lindenberg, 
Germany was chosen as representative in comparison to 
the other weather stations. To depict the temporal course 
of typical residential load demand, minutely resolved 
load demand data of a household is taken into account, 
referring to [15]. The load profile is characterized by an 
annual load demand of 5282 kWh. 

The model of the PV system is based on the work 
presented in [16] and [17]. The required model 
parameters are specified by characteristic curves of a 
multi-crystalline module and a transformer-less inverter. 
Besides that the PV generator is assumed to be south-
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oriented with a 35° declination. Furthermore the rated 
power of the PV generator is considered to be 5.3 kWp, 
which results in a PV system size to annual load demand 
ratio of about 1 kWp/MWh. The maximum PV inverter 
power output is restricted to 5.3 kW. This results in a 
specific annual energy yield of the PV system of 
1002 kWh/kWp. In this paper the maximum feed-in 
power is restricted to 50% of the rated PV power for that 
it is comparable with [2,3,6,7]. 

In order to get general insights into the system 
operation a simple storage model is used that depicts the 
general characteristics of a lithium-ion battery [1]. It is 
assumed that the AC-coupled battery system has a 
constant watt-hour efficiency of 95% and an additional 
6% of conversion losses in the battery inverter, so that the 
round tip efficiency is roughly 84%. The maximum 
power output and input of the battery inverter related to 
the usable capacity is limited to 1 kW/kWh. Accordingly 
to [1] the usable battery capacity is set to 1 kWh/MWh 
annual load demand, i.e. 5.3 kWh of usable battery size is 
considered. In order to take aging into account it is 
assumed that on average 90% of the usable capacity was 
available over the operation time. Note that the battery is 
not allowed to feed energy into the grid or draw energy 
from the grid. 

2.2 Control Scheme 
Additionally the control algorithm, which implements 

forecast-based peak-shaving by dynamically limiting the 
feed-in, has to be described. The controller is based on a 
linear optimization approach which consists of basic 
balancing equations and is solved by the simplex 
algorithm. Therefore it is expected that the PV power 
output 𝑃pv is primary used to meet the load demand 
𝑃load. Hence only the residual surplus PV power output 
could be used to charge the battery 𝑃bc, feed into the grid 
𝑃gf or at last option be curtailed 𝑃ct.  

𝑃pv − 𝑃load = 𝑃bc + 𝑃gf + 𝑃ct  (𝑃pv > 𝑃load) (1) 

If the PV supply is lower than the demand, the 
residual load will be supplied either through discharging 
the battery 𝑃bd or through drawing from the grid 𝑃gl. 

𝑃pv − 𝑃load = 𝑃bd + 𝑃gl    �𝑃pv < 𝑃load� (2) 

Further the battery balance is described by 
equation (3) at the first time step of the optimization and 
by equation (4) for further steps. Therefore the actually 
stored energy 𝐸b0 and time step length Δ𝑡 is needed. 

𝜂bc𝑃bc +
1
𝜂bd

𝑃bd −
1
Δ𝑡 𝐸b = −

1
Δ𝑡 𝐸b0 (3) 

𝜂bc𝑃𝑏𝑐 +
1
𝜂bd

𝑃bd +
1
Δ𝑡 �𝐸b

𝑡−1 − 𝐸b� = 0 (4) 

Although 𝑃gf,max has to be calculated so that the 
battery is fully charged at the lowest possible feed-in 
power with sparse curtailment at least one equation for a 
peak-shaving grid feed-in limit is needed. Besides that, 
the feed-in limit is assumed to be constant over the whole 
optimization horizon. 

𝑃gf − 𝑃gf,max ≤ 0 (5) 

For shortage, the system boundary conditions such as 
e.g. lower and upper limitation due to inverter size, were 
left out. The cost function considers the retail electricity 
price and feed-in tariff. Additionally, lower feed-in and 
curtailment losses are valued qualitatively. 

In order to compensate possible forecast errors in 
terms of deviations between the predicted and measured 
surplus PV power, a real-time correction unit is needed. 
An equation is developed to realize the optimized feed-in 
when PV-power is greater than load demand or the feed-
in is greater than the maximum. Note that the index f 
marks the forecasted values. 

𝑃bc = max�0,
𝑃bc,f

+�𝑃pv − 𝑃load� 
 −(𝑃pv,f − 𝑃load,f) 

� (6) 

If the PV output is below the load demand; the 
battery discharge should follow the load precisely until 
the state of charge (SOC) has reached the minimum 
value. 

𝑃bd = 𝑃pv − 𝑃load (7) 

The entire control algorithm is depicted in Figure 2. 
At first; the optimization is carried out based on the 
current SOC of the battery and forecasts about the future 
load demand and PV-generation. The output is an 
optimized schedule of the battery charging power within 
the optimization horizon. To balance forecast errors in 
real time, the actual optimal charge power is adjusted by 
the real-time correction unit based on equation (6). 
Finally, the battery is charged with the corrected value. 
The optimization is done every 15 minutes, with 
15 minutes of forecast resolution and 15 hours of 
optimization horizon. A detailed model description can 
be found in [18]. 

 

 
Figure 2: Control scheme of the forecast-based operation 
strategies . 
 
3 ENERGETIC EVALUATION 

3.1 Energetic evaluation criteria 
Simulation results considering different forecast 

approaches were assessed by the comparison of two 
dimensionless quantities. First the degree of self-
sufficiency d is used which specifies the fraction of the 
total load demand covered by the PV battery system. 
Hence d is obtained by dividing the sum of directly used 
PV energy Edu and energy discharged from the battery 
Ebd by the load demand Eload. 

d = 
Edu + Ebd

Eload
 (8) 

If losses in the degree of self-sufficiency emerge, less 
PV-energy will be used for charging the battery and in 
consequence more electricity has to be drawn from the 
grid. Nevertheless, as the amount of PV energy that is 
stored in the battery decreases, a higher amount could be 
injected into the grid. 
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Secondly the rated curtailment losses 𝑙 is investigated 
which reveals the percentage of unused PV energy. It 
could be determined from the curtailed energy 𝐸ct 
divided by the total theoretical PV production 𝐸pv.  

𝑙 =
𝐸ct
𝐸pv

 (9) 

A reduction of curtailment losses results in an 
increase of the grid feed-in, which enhances the financial 
benefit for the operator of the PV battery system, thus it 
needs to be minimized. In principle, both assessment 
criteria vary with a number of parameters. The impact of 
the system configuration in terms of PV and battery size 
on these operational results was analyzed in [1].  

3.2 Energetic evaluation results 
In this section the impact of different approaches for 

the load and PV generation forecasts on the operational 
results are assessed from the energetic perspective. To 
reveal the reasons for changes in the energetic criteria, 
different forecast approaches for the load and PV 
prediction will be combined with each other. This has 
been performed for perfect, persistence and energy 
forecasts. Perfect forecasts precisely coincide with the 
real time series of load and PV. Nevertheless the 
temporal resolution of the perfect forecasts is reduced to 
15 minutes, as the optimization is done on this time scale.  

Furthermore the most simple stochastic technique of 
forecasting is the extrapolation of recent values, called 
persistence [19]. In this paper persistence forecasts are 
used to determine PV power forecasts based on the 
measured time series of the past day. This approach is 
also applicable for load forecasts. As load profiles of 
households often imply a dependency on the weekday, 
the load prediction is based on the measured load of the 
same day of the former week. For simplicity, this 
approach for load forecasts is also referred to as 
persistent or real forecast. 

Due to the variability of the load and PV generation 
time series, it can be assumed that forecasting only daily 
energy amounts of load demand and PV generation is 
easier than the prediction of the time series. Accordingly, 
the projected energy could be applied on characteristic 
curves such as clear-sky or standard load profiles to 
forecast the time series. In this paper, this method is 
defined as energy forecast.  

Before revealing the impact of the different forecast 
approaches on the performance, the conventional 
operation strategy of charging the battery as soon as 
possible should be compared with the dynamic feed-in 
limitation. Considering perfect forecasts for the dynamic 
feed-in limitation, both operation strategies result in a 
degree of self-sufficiency of 54.4%. In Figure 3 the 
curtailment losses for both operation strategies are 
depicted. Limiting the PV feed-in to 50% of the rated PV 
power causes about 7% less usage of PV energy in the 
case of conventional battery operation. This is due to the 
fact that the battery is often fully charged before 
generation peaks, which have to be curtailed afterwards. 
If the battery is operated with a dynamic feed-in-
limitation, curtailment losses will be reduced more or less 
by the factor seven considering perfect forecasts. Using 
error-prone persistence forecasts, the energy losses due to 
curtailment can only be halved compared to the 
conventional operation strategy. Even with perfect 
forecasts curtailment losses could emerge. This is 
explicable with insufficient spare capacity in the battery  

 
Figure 3: Curtailment losses in relation to the annual PV 
energy output for different operation strategies. 

 
due to an incomplete discharging in the night through 
lowest consumption or due to small installed battery 
capacity. Since the persistence forecast is the benchmark 
of a naive forecast, Figure 3shows the range for the 
curtailment with a more intelligent battery operation. 

Furthermore persistence forecasts induce only good 
results if the weather situation is similar to the day 
before, otherwise forecast errors occur that have to be 
corrected by the control algorithms. For example; 
optimizing energy flows in expectation of a clear sky day 
while clouds cover the sun leads to higher expected feed-
in and therefore battery charging is delayed till noon. If 
the power output stays below the limit, the optimization 
adapts in terms of fully charging the battery on the 
remaining forecasted clear sky day but could fail to reach 
the maximum degree of self-sufficiency concerning the 
small PV supply. Thus error-prone forecasts do not only 
affect the curtailment losses but also the degree of self-
sufficiency.  

In order to illustrate the impact of forecast quality on 
the dynamic feed-in limitation, Figure 4 shows the 
correlation of different forecast models to curtailment 
losses and to the degree of self-sufficiency. It is obvious 
that operational strategies are affected by forecast errors 
with differences in the forecasted quantities. A perfect 
forecast could reach the highest rate in the degree of self-
sufficiency while preserving lowest curtailment. Despite 
that, persistence PV and load forecasts deliver the lowest 
degree of self-sufficiency and highest curtailment among 
the dynamically operated PV battery systems, which is 
also displayed in Figure 3. To conclude, forecast induced 
losses emerge compared to perfect forecasts, hence the 
household could be less supplied by the PV battery 
system and more PV energy is curtailed, although a 
higher feed-in could be achieved. If only a persistence 
PV forecast and a precisely known time series of the load 
are applied, the degree of self-sufficiency slightly 
increases and a reduction of curtailment losses of about 
0.7% can be obtained. Besides that, the assumption of 
perfect PV and persistence load forecasts absolutely 
increases the degree of self-sufficiency 𝑑 by about 0.5% 
and decreases curtailment losses by about 1.5% 
compared to complete persistence forecasts. 

This indicates that PV forecasts have a stronger 
impact on the simulation than load forecasts and that 
persistence fits better for residential load than for PV 
generation. Moreover, errors of both forecasts together do 
not increase the losses as much as both errors in sum; 
hence it is obvious that forecast errors could interfere 
positively. The comparison to perfect forecast operational 
results should be the benchmark for an improvement of 
the prediction approaches. 
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Figure 4: Annual energetic evaluation criteria in 
dependence of the forecast quality for dynamic feed-in 
limitation.  
 

The results reveal that the gain of dynamic operation 
can be obtained by avoiding curtailment, varying in the 
range of 50% to 90% depending on the forecast 
technique, feed-in-limit and overlap of load demand and 
PV generation. Secondly, PV forecasts have a stronger 
impact on the results of that application than load 
forecasts, consequently this paper focuses on 
improvements of PV forecasts. 

3.3 Improvements in PV forecasts 
In comparison to other quantities that could be 

forecasted, solar power has the advantage that the 
possible appearance is well known. Various models for 
the calculation of the sun position and clear sky radiation 
have been developed over the past century. Especially the 
fracture of actual irradiance to the possible maximum 
clear sky irradiance 𝑘T, is advantageous for forecasting. 
If the value is known, the bell-shaped-curve of solar 
radiation results by multiplying it with clear sky 
irradiation. Analogous to the irradiation the fraction of 
PV power 𝑘pv could be defined as: 

𝑘pv =
∫ 𝑃pv
𝑡2
𝑡1

𝑑𝑡

∫ 𝑃pv,max
𝑡2
𝑡1

𝑑𝑡
 (10) 

While 𝑃pv is the actual PV power output, 𝑃pv,max is 
the expected maximum PV power at the same time. 
𝑃pv,max can be obtained from measured values of the past 
which has prevailing positive properties. On the one hand 
it incorporates orientation, shadow situation and 
temperature dependence at a specific site. On the other 
hand, small errors occur because sunrise and sunset were 
not depicted correctly and could differ by a few minutes. 

𝑃pv,max(𝑡) = 𝑃pv�𝑡 − (𝑛 ⋅ 24 h)� (11) 

Therefore 𝑛 is the number of days backwards, chosen 
by the criterion (12). It depends on the maximum energy 
yield at a time interval 𝑡1 and 𝑡2 around the actual time 𝑡 
and at a day of the year (𝑑𝑜𝑦) that is less than 𝑛max days 
close to the current 𝑑𝑜𝑦. 

𝑛 chosen by: max 
𝑛=1…𝑛max

� 𝑃pv(𝑡,𝑑𝑜𝑦 − 𝑛) d𝑡
𝑡2

𝑡1
 (12) 

Although this approach seems laborious, it is easier 
to implement into the practical operation than the 
alternative of clear sky irradiance calculation which 
needs site and system specific input parameters. With 

only a one year database no negative effects on the 
simulation were obtained compared to the usage of a 
clear sky model and in fact the maximum fit gets better 
with each year running. Nevertheless a bell-shaped 
production curve as maximum could not be guaranteed 
with such a poor database. For the simulation the period 
for look up 𝑛max is limited to ten days backwards and the 
energy of criterion (12) is evaluated for hourly intervals 
which show sufficiently precise results. A forecast could 
be acquired by multiplying a forecasted 𝑘pv,f over the 
entire forecast horizon with the maximum generation 
time series. 

𝑃pv,f(𝑡) = 𝑘pv,f ⋅ 𝑃pv,max(𝑡) (13) 

Assuming that the yield of the next day could be 
known precisely, a forecast could be derived that is 
correct in overall energy but differs in shape. If the 
operational result of perfect PV and persistence load 
forecasts are compared to a perfect forecast of the overall 
energy, with the same load forecasts, curtailment losses 
increase only by about 0.5% while the degree of self-
sufficiency remains steady which implies the forecast of 
the overall energy fits very well for this application.  

In order to investigate the influence of forecast 
accuracy, a bias deviation and a stochastic variation has 
been determined. In Figure 5 and Figure 6, the absolute 
losses compared to perfect forecast are shown. Therefore, 
in Figure 5 the predicted energy varies by a fixed factor 
(bias variation) where 100% signifies a perfect energy 
forecast. It becomes apparent that forecasting less energy 
causes higher curtailment losses and an increasing degree 
of self-sufficiency due to earlier charging of the battery. 
Furthermore, in the case in which more energy is 
forecasted than measured, the amount of peak energy is 
too small to fully charge the battery. Consequently the 
feed-in limit is adapted dynamically, so that less 
curtailment losses but increasing losses in the degree of 
self-sufficiency occur. Moreover the standard deviation 
of normally distributed forecast errors shifts the 
operational results toward persistence forecast which is 
depicted in Figure 6. As a consequence of this analysis, 
forecast errors could be classified as a function of the 
energetic criteria 𝑑 and 𝑙. 

 
  

 
Figure 5: Influence of systematic forecast errors on 
energy PV forecasts for dynamic feed-in limitation. 
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Figure 6: Influence of stochastic forecast errors on 
energy PV forecasts for dynamic feed-in limitation. 

 
Furthermore, it is commonly known that the 

persistence approach is suitable for short time scales of 
PV forecasting [19]. Hence, it can be assumed that 
further forecast accuracy could be achieved by updating 
the PV forecasts during the day taking more recent 
measurements into account. This allows adapting the 
forecasts in the event of weather changes despite day 
ahead forecasts used before that have a constant accuracy 
over the forecasted period. In the following section such 
an adaptive approach is developed and applied to the 
operation strategy. 

To implement the adaptive approach, a moving 
horizon 𝑘pv,f over a horizon ℎ is calculated with 
equation (14) to predict the upcoming generation output.  

𝑘pv,f =
∫ 𝑃pv𝑑𝑡
𝑡
𝑡−ℎ

∫ 𝑃pv,max𝑑𝑡
𝑡
𝑡−ℎ

 (14) 

Note that the nighttime is excluded from the moving 
horizon so that only meaningful measurements are 
evaluated. It could be guessed that, if a short horizon is 
applied, the forecast adapts very quickly to changing 
weather conditions. Hence each cloud changes the 
forecast of the next 15 h. Whereas a greater ℎ causes 
more average weather forecasts, which therefore are not 
affected by smaller bands of clouds. Figure 7 shows the 
influence of the horizon on the operational results. It is 
obvious that the horizon influences the operational 
behavior and leads to different combinations of 
curtailment losses and degrees of self-sufficiency 
nevertheless with a variation in the range of 0.15%. 

 

 
Figure 7: Energetic evaluation for an adaptive moving 
horizon PV-forecast for dynamic feed-in limitation. 

An appropriate horizon could be obtained by 
following considerations; the system operation aims on 
the maximization of the degree of self-sufficiency, while 
minimizing curtailment losses. As a forecast with longer 
horizons is more average, less energy is forecasted and 
the battery starts charging earlier, hence the degree of 
self-sufficiency is increased but the forecast adaption to 
measurements is damped. Besides that, the minimum of 
curtailment can be found with shorter horizons and fast 
adaption. The opposed influence of the horizon length 
causes a problem of optimization. Apparently a horizon 
below 5 h shows a visible increase in the degree of self-
sufficiency and a longer horizon will only increase 
curtailment losses. Therefore the optimum could be 
found at the break point of the curve. For that purpose a 
horizon ℎ in the range of 4.5 h shows best annual 
performance for the case study. The performance of the 
investigated forecast approaches are finally compared in 
Figure 8. The advantage from the usage of adaptive PV 
forecast is compared to the PV persistence and real load 
forecasts a 1% higher infeed and a decrease of 0.3% in 
terms of grid supply. The gap towards operation with 
perfect PV and real load forecasts is decreased to 0.5% 
more curtailment and a 0.25% lower degree of self-
sufficiency, which is close to the results of a commercial 
PV forecast investigated here [12] 

The before mentioned results lead to the conclusion 
that energy forecasts are a simple but appropriate method 
as only a single value has to be forecasted. Secondly 
persistence forecasts are proper for shorter timescales and 
could therefore be used in a moving horizon to predict 
the near future with the nearby past. At least distinct 
improvements compared with persistence forecasts are 
possible using adaptive forecasts based on measured data.  

 

 
Figure 8: Comparison of the operational results of the 
adaptive forecast approach. 

 
4 ECONOMIC EVALUATION 

 
From a business economists point of view there are 

two perspectives on the operation of a PV battery system. 
First the investment decision with variability of system 
sizing, resulting in mean electricity costs over a given 
period [1,20]. The second perspective covers only the 
optimization of operational costs which includes the 
minimization of curtailment losses and maximization of 
the degree of self-sufficiency. In the previous section 
different forecast approaches were compared to rate their 
efficiency on energetic criteria within a dynamic feed-in 
operation. This section focuses on the comparison with 
the competitive conventional operation strategy. 
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4.1 Economic evaluation criteria 
Regarding to the energetic criteria defined in 

section 3, operational results for different battery 
operation strategies could be financially valued. The 
differences of the curtailment losses Δ𝑙 and the degrees of 
self-sufficiency Δ𝑑 expose the benefits and disadvantages 
of the operation strategy with identical boundary 
assumptions. 

Δ𝑙 = 𝑙conv − 𝑙dyn (15) 

Δ𝑑 = 𝑑conv − 𝑑dyn (16) 

Furthermore, the investigations in section 3 showed 
that dynamic feed-in causes a decreasing degree of self-
sufficiency as well as decreasing curtailment losses. This 
could be financially expressed with; additional feed-in 
that increases the financial benefit while losses in the 
degree of self-sufficiency lead to a higher electricity bill 
because more energy has to be drawn from the grid. In 
order to illustrate this relation the balance of payment 
flows for adaptive PV forecast and real load forecasts is 
displayed in Figure 9. 

 

 
Figure 9: Balance of payment flows for the comparison 
of different operation strategies. 
 
Furthermore this balance allows discounting the 
differences in the operational costs Δ𝑝. 

Δ𝑝 = �Δ𝑙 ⋅ 𝐸pv +
Δ𝑑
𝜂bat

⋅ 𝐸load� 𝑟pv − Δ𝑑 ⋅ 𝐸load𝑐gl (17) 

Therefore the feed-in-tariff 𝑟pv multiplied with the total 
generated energy 𝐸pv is the annual revenue from an only 
grid-feeding PV-system. The total load demand 𝐸load 
multiplied with the retail electricity price 𝑐gl marks the 
total annual electricity costs without a PV battery system. 
The expression Δ𝑑 𝜂bat⁄ ⋅ 𝐸load calculates additional 
feed-in from the loss of degree of self-sufficiency by 
dividing it through the battery round tip efficiency. With 
that equation, relative expressions are possible were a 
positive Δ𝑝 means that dynamic feed-in-limitation has 
economic advantages compared with conventional 
operation and money could be saved. 

The economic evaluation is based on the assumptions 
shown in Table I. It is assumed that the feed-in tariff is 
0.10 €/kWh and the retail electricity price is 0.32 €/kWh. 
 
Table I: Assumption of the basic scenario 
Retail electricity price 0.32 €/kWh 
Feed-in-tariff 0.10 €/kWh 

4.2 Economic evaluation results 
The results of the economic evaluation in terms of 

differences in the annual operational costs compared with 
the conventional operation strategy are depicted in 
Figure 10. As the balance of the operational costs is 
positive for all forecast approaches, the dynamic feed-in 
limitation is more rewarding than the conventional 
operation strategy, independent of the forecast accuracy. 
Furthermore, Figure 10 shows that maximum potential 
gain is about 30 € per year whereas load forecast errors 
cause losses of about 12 €. When the persistence 
approach is also used for the PV forecast the profit 
margin is reduced to 5 € and adaptive PV forecasts could 
increase that margin up to 13 €.  

 

 
Figure 10: Annual profit through dynamic feed-in 
limitation considering different forecast quality. 
 

Nevertheless, the aforementioned differences in the 
annual operational costs depend on the cost assumptions. 
With zero differences in the operational costs, the limit of 
profitability 𝑐gl,limit of the dynamic feed-in limitation can 
be calculated by transforming equation (17). 

𝑐gl,limit = �
Δ𝑙 ⋅ 𝐸pv
Δ𝑑 ⋅ 𝐸load

+
1
𝜂bat

� ⋅ 𝑟pv (18) 

As the feed-in tariff 𝑟pv is varied, the limit of 
profitability could be calculated for different cost 
assumptions, which is depicted in Figure 11, considering 
the simulation results of the adaptive PV forecast and real 
load forecast. It has to be pointed out that nowadays in 
Germany the feed-in-tariff depends only on the date of 
installation while the retail electricity price could change 
during the operational lifetime. Hence it is obvious that in 
this case study a system installed in the upcoming years 
should be operated with the dynamic feed-in-limitation in 
order to maximize the profits. It also reveals that 
sufficient remuneration for feed-in is needed; otherwise 
the effort for grid integration is reduced to the minimum. 

 

Figure 11: Limit of profitability of dynamic feed-in 
limitation. 
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Finally; a crucial point can be found in the 
assumption of a 50% feed-in-limitation despite that it is 
not comprehensively mandatory yet. In order to analyze 
the effect of divergent maximum feed-in on the economic 
results, the annual profit through dynamic feed-in 
limitation is plotted in Figure 12 with different regulatory 
feed-in limits. It reveals that an intelligent battery 
operation could be profitable over the spectrum of 
relevant feed-in limits. Since curtailment losses increase 
exponentially with conventional battery operation and 
decreased feed-in limits, dynamic feed-in limitation has 
an increased economic benefit because curtailment can be 
reduced minimum. 

 

Figure 12: Annual profit through dynamic feed-in 
limitation as a function of the maximum feed-in limits. 
 

The economic results can be summed up as follows; 
for the economic assessment of different operation 
strategies it is necessary to value the energy flows 
precisely and to take positive as well as negative aspects 
into account. Additionally, it could be shown that the 
reduction of curtailment is the major cost driver, which 
makes a dynamic feed-in limitation profitable even with 
persistence PV forecasts. Finally, the case study reveals 
that an intelligent battery operation with adaptive PV 
forecasts is economically reasonable over a long term 
considering the limit of profitability. 
 
5 DISCUSSION 

 
The results of this paper should be compared to the 

results of recent work and be classified in order to 
estimate whether they are sensitive or solid results.  

First, the energetic assessment could be done by 
comparing the results to other studies, evaluating perfect 
and real forecasts. Riesen et al. show that forecast errors 
cause a loss in the degree of self-sufficiency of about 4% 
which could be lower with a 50% feed-in-limitation [11]. 
On the other hand, Williams et al. show 0.2-0.3% losses 
of the self-supply regarding a different operation strategy 
[2]. Zeh and Witzmann, but also Braam et al. agree on 
about 1.4-3% losses due to peak shaving operation with 
realistic forecasts in the middle of these results [7,8]. 
Especially the results of Moshövel et al. are interesting 
because they use persistence forecasts and are therefore a 
congruent approach with this paper. With slightly higher 
feed-in limits they found curtailment losses in the same 
range but higher losses in the degree of self-sufficiency 
regarding forecast errors [10]. To summarize, the 
energetic assessment could be found in the spectrum of 
recent work so that results seem to be comparable.  

Due to the conception of case studies, they are not 
representative but they give a hint which paths should be 
further investigated. Therefore, model assumptions and 
input-data need to be proofed. First; the load profile 
could be called representative because characteristic 
quantities lay in the center of 75 measured households, 
referring to recent work of [21]. Secondly; also sizing of 
the system seems representative recognizing [1], hence it 
is not further discussed. Thirdly; as mentioned before, the 
site was chosen as representative comparing 25 weather 
stations in Germany. Fourthly; the economic validation 
could be done by comparison with results of [2]. It shows 
that similar assumptions deliver similar results, despite 
the forecast approach and control algorithm differs. 

Whereas the assumptions and results seem to be 
reasonable, a critical view should be taken on the 
discounting approach. Besides the payment flow 
considering grid exchange, other economic quantities 
were neglected that were positively influenced by 
dynamic feed-in limitation. E.g., Li and Danzer pointed 
out that due to reduced dwelling time, the battery life 
time could be enhanced [5], hence the investment period 
could be extended. Furthermore reduced infeed could be 
the basis for further PV expansion in areas with depleted 
hosting capacity [9], which could enhance the value of 
peak shaving operation enormously. 
 
6 CONCLUSION 
 

The upcoming market of PV self-sufficiency submits 
new opportunities for PV grid integration. Thereby it is 
more than reasonable to operate batteries based on 
forecasts in a grid relieving mode. The discussed 
approaches need to prove feasible with regard to error-
prone forecasts. This contribution could show what the 
inevitable losses due to simple load forecasts are and that 
even PV persistence is applicable with the developed 
algorithm. But a further development towards adaptive 
forecasts increases the advantages of a forecast based 
operation distinctly. On the basis of short time weather 
persistence a moving horizon forecast was developed 
which only needs measurement of the PV power time 
series. Further, the economic benefit of an adaptive 
forecast compared to persistence could be doubled up to 
tripled, which leads to the conclusion that modest 
forecast improvements have a significant impact. This 
implies that a commercial PV forecast product must be 
cheap to compete with autonomous forecasts.  

Despite the advantages in the grid operator’s point of 
view for dynamic feed-in limitation it could be proven as 
beneficial for the system owner. The limit of profitability 
indicates up to what retail electricity price the PV battery 
system should be operated reasonably from an 
economical point of view, with a dynamic feed-in 
limitation. Current battery systems with a feed-in limit 
below 70% of the installed PV capacity could be operated 
economically over the next years with a dynamic feed-in 
limitation. For future systems it is essential that feed-in is 
sufficiently remunerated otherwise there is no incentive 
for improved grid integration. Finally, a revealing insight 
of Figure 12 is that the feed-in-limitation seems to be a 
major lever for politics to decide on how PV battery 
systems are to be operated. While a limit of 60% does not 
sufficiently enforce a peak-shaving operation, the 
regulation of feed-in below 50% of the installed PV 
capacity makes an intelligent operation mandatory. 
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