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Self-consumption markets in the EU

Sources: Eurostat, RES Legal, SolarPower Europe
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● Countries with feed-in tariff
● Countries without feed-in tariff
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AC-coupled inverters

DC-coupled systems with batteries

DC-coupled inverters

AC/DC-coupled systems with batteries Generator-coupled systems with batteries

Source: manufacturer

Batteries

Overview on products available on the market

AC-coupled systems with batteries
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AC-coupled systems with batteries

AC-coupled inverters

DC-coupled systems with batteries

DC-coupled inverters

AC/DC-coupled systems with batteries Generator-coupled systems with batteries

Source: manufacturer

fully 
integrated

systems
without

PV inverter

without
PV inverter and battery

Batteries

without
battery

Overview on products available on the market
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System topologies of PV-battery systems
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System topologies of PV-battery systems
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Classification of system-related loss mechanisms

Conversion losses

• Efficiency of the power
electronics

• Battery round trip
efficiency

Standby losses

• Battery Management
System (BMS)

• Power electronics

• Auxiliaries (EMS, meter)

Control losses

• Transient response

• Measuring accuracy
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Possible performance evaluation procedures

Field tests Black-box tests White-box tests Simulation tests

Characteristics

 Long-term field tests by 
monitoring the real 
operational behavior over 
a period of at least one 
year

 Short-term application 
tests in a laboratory 
environment with 
reference profiles or at 
defined operating points

 Detailed characterization 
tests under laboratory 
conditions with the aim of 
characterizing the 
efficiency of each 
component or path of 
energy flow

 Model-based simulation 
tests parametrized with 
measurements from 
white-box tests and based 
on measured load and PV 
output profiles

Results

 Average operating 
efficiency and load 
distributions of distinct 
paths of energy flow

 Use case-specific 
performance indicator 
obtained from 
measurements

 Measurements of 
efficiency curves, standby 
consumption, response 
behavior, etc.

 Use case-specific 
performance indicator 
obtained from simulations

Research activities in Germany and Austria
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Possible performance evaluation procedures

Field tests Black-box tests White-box tests Simulation tests

Characteristics

 Long-term field tests by 
monitoring the real 
operational behavior over 
a period of at least one 
year

 Short-term application 
tests in a laboratory 
environment with 
reference profiles or at 
defined operating points

 Detailed characterization 
tests under laboratory 
conditions with the aim of 
characterizing the 
efficiency of each 
component or path of 
energy flow

 Model-based simulation 
tests parametrized with 
measurements from 
white-box tests and based 
on measured load and PV 
output profiles

Results

 Average operating 
efficiency and load 
distributions of distinct 
paths of energy flow

 Use case-specific 
performance indicator 
obtained from 
measurements

 Measurements of 
efficiency curves, standby 
consumption, response 
behavior, etc.

 Use case-specific 
performance indicator 
obtained from simulations

Advantages

 Real operational and long-
term performance can be 
observed

 Short time period required 
and good comparability of 
the test results

 Detailed characterization 
of the components and 
overall system

 Fast test procedure and 
good reproducibility of the 
test results

Disadvantages

 Long time period required
 Results mostly available 

for outdated products
 Identical test conditions 

are hard to ensure
 Limited comparability of 

the test results from 
different systems

 Measurements are already 
affected by the predefined 
profiles

 Test results are only 
applicable to the specific 
use case

 General validity of the 
reference profiles has to 
be demonstrated

 No single performance 
indicator for the end-
customer can be extracted 
from the test results

 Expensive measurement 
equipment is required

 Poor comparability 
between the results of 
different topologies

 Detailed characterization 
measurements are 
required

 Accuracy of the test 
results depends on the 
level of detail of the 
simulation model

 Not all loss mechanisms 
can be modelled exactly 
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Proposed model-based simulation test

Exemplary system components

Auxiliaries
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Proposed model-based simulation test

Exemplary system components

• SMA Sunny Boy 5000 TL

• SMA Sunny Island 3.0M 

• Akasol neeoQube

• SMA Sunny Home Manager

• SMA Sunny Remote Control

• SMA Energy Meter

Auxiliaries
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Proposed model-based simulation test

Exemplary system components

• SMA Sunny Boy 5000 TL

• SMA Sunny Island 3.0M 

• Akasol neeoQube

• SMA Sunny Home Manager

• SMA Sunny Remote Control

• SMA Energy Meter

Test procedure

• Input data (1 s): PV generator´s 
output power (5 kWp) and 
electrical load (5 MWh/a)

• Time series simulations over one 
year for the real system in 
comparison to an ideal, lossless 
reference system

• Energetic and economic assessment 
as simulation results

Grid supply Grid feed-in

Auxiliaries
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Annual energy balance

with real
PV-battery system

with ideal
PV-battery system

with ideal
PV system

Residential building

𝜂 = 100%

𝜂 = 100%

PV-generator: 5 kWp, load demand: 5 MWh/a, ideal: no conversion, standby and control losses
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Annual costs and revenues 

with real
PV-battery system

with ideal
PV-battery system

with ideal
PV system

Residential building

𝜂 = 100%

𝜂 = 100%

PV-generator: 5 kWp, load demand: 5 MWh/a, feed-in tariff: 12 ct/kWh, retail electricity price: 28 ct/kWh
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Definition of the Storage Performance Index (SPI)

PV-generator: 5 kWp, load demand: 5 MWh/a, feed-in tariff: 12 ct/kWh, retail electricity price: 28 ct/kWh
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Definition of the Storage Performance Index (SPI)

120 €/a =  51%235 €/a = 100%

Storage Performance Index

PV-generator: 5 kWp, load demand: 5 MWh/a, feed-in tariff: 12 ct/kWh, retail electricity price: 28 ct/kWh
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SPI: Realized grid electricity cost savings

PV-generator: 5 kWp, load demand: 5 MWh/a, feed-in tariff: 12 ct/kWh, retail electricity price: 28 ct/kWh
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SPI: Realized grid electricity cost savings

PV-generator: 5 kWp, load demand: 5 MWh/a, feed-in tariff: 12 ct/kWh, retail electricity price: 28 ct/kWh
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Contribution of different loss mechanisms to the SPI

PV-generator: 5 kWp, load demand: 5 MWh/a, feed-in tariff: 12 ct/kWh, retail electricity price: 28 ct/kWh
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Variation of the Storage Performance Index

PV-generator: 5 kWp, load demand: 5 MWh/a
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• Performance-related specifications are rarely stated in 
the data sheets of PV-battery systems.

• Standardized performance tests are required to improve the 
comparability of the performance between different 
products, and thereby the transparency from the end 
customer`s point of view.

• A variety of performance test procedures is currently 
under discussion.

• Adequate system performance tests should assess the 
conversion, standby and control-related losses.

• The performance of PV-battery systems of different sizes and 
system topologies can be assessed with the proposed 
Storage Performance Index (SPI). 

• The developed simulation test allows the optimization of the 
system layout, system sizing and control algorithms
and will be published as open source model in the future.

pvspeicher.htw-berlin.de

Conclusion

http://pvspeicher.htw-berlin.de/

