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Abstract—This paper analyzes forecast-based operation strategies for residential PV battery systems which have the capability of 

feed-in peak shaving and self-sufficiency optimization as well. To evaluate the robustness of these operation strategies, simulations 

in one minute resolution are carried out over a period of one year, taking real PV power and load forecasts into account. The 

impact of forecast inaccuracies on the performance is assessed from the energetic and economic perspective. The results highlight 

that already simple forecasts based on the approach of persistence facilitate an economic benefit compared to conventional 

operation strategies neglecting forecasts. By implementing forecast-based operation strategies into residential PV battery systems, 
the decentralized usage of PV generated energy and the grid integration of PV is improved. 
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I. INTRODUCTION 

Given the increasing number of installed PV systems in 
Germany, new challenges with regard to the grid integration 
of PV generated electricity are coming up. Amongst those 
challenges is the issue of ramps and peaks of the injected PV 
power into low voltage grids. One option to tackle this 
challenge consists in the approach of restricting the PV 
power fed into the grid. Since the revision of the German 
Renewable Energy Act (EEG) in 2012, either taking part in 
the so-called feed-in management, or limiting the maximum 
feed-in power to 70% (0.7 kW/kWp) of the rated power is 
mandatory for PV systems below 30 kWp in Germany. In 
general, a limitation of the grid feed-in of PV systems can be 
achieved by different measures. Firstly, already the 
simultaneous direct use of PV power by the electrical loads 
can reduce the injected PV power. Due to diurnal and 
seasonal fluctuations in both the PV generation and load 
demand, the direct use of PV energy is limited, though. 
Nevertheless, shifting the consumption of deferrable loads 
may also reduce the injected feed-in peaks. 

Another approach to limit the feed-in power consists in 
using battery systems for that purpose. This has already been 
incentivized by the renewable energy storage program of the 
German government-owned development bank (KfW) since 
May 2013. The utilization of the funding program requires 
limiting the feed-in power of grid-connected PV battery 
systems to 0.6 kW/kWp. Additionally, further reductions in 
the feed-in power can also be achieved by charging electric 
vehicles or by the thermal usage at times of high PV 
production. Ultimately, the PV power output could be 
diminished to prevent the feed-in power from exceeding the 
stipulated maximum threshold value.  

By implementing such feed-in limitation measures, a 
higher number of PV systems can be connected to the grid. 
In this way, a slowdown of the future PV expansion in 
highly penetrated low voltage grids for reasons of limited 

grid capacity can be reduced. From the grid operator’s point 
of view, the lower the overall maximum feed-in power, the 
higher the hosting capacity of the grid for additional PV 
systems. Hence, strengthening existing PV feed-in limitation 
requirements is worthwhile to realize an energy supply 
covered mostly by renewables in Germany.  

This paper focuses on the contribution of residential PV 
battery systems to limit the PV injection. In Section II, the 
characteristics of distinct operation strategies are analyzed. 
Section III describes the input data and models used in the 
simulation study. The simulation results for different 
operation strategies are assessed from the energetic and 
economic perspective in Section IV and Section V, 
respectively. Finally, Section VI concludes this paper. 

II. OPERATION STRATEGIES FOR PV BATTERY SYSTEMS 

In general, residential PV battery systems can be 
operated with different objectives in mind. This can be 
achieved by controlling the charging power of the battery 
systems with distinct algorithms. Fig. 1 provides a 
schematic overview of different operation strategies and 
their characteristic properties. The primary objective of 
residential PV battery systems is to increase the self-
sufficiency of the household equipped with the system. This 
is accomplished by storing surplus PV power during the day 
and using it later to supply the loads after sunset. If storing 
surplus power is the only objective, the battery is usually 
charged with the first available surplus PV energy in the 
morning. By charging the battery in this way, the battery 
frequently reaches its maximum state of charge before noon, 
especially on clear days. Afterwards, the PV peak 
production is injected into the grid around midday. As a 
consequence, operating a PV battery system without feed-in 
limitation does not relieve the grid from PV feed-in spikes. 
Hence, to utilize the capability for feed-in peak shaving 
while preserving the advantages regarding self-sufficiency 
optimization, more sophisticated grid-compatible modes of 
operation are needed.  



 

Figure 1.  Schematic overview of different operation strategies for PV battery systems and their characteristic properties  

Maintaining a fixed feed-in limit is conventionally 
achieved by curtailing surplus PV power that exceeds this 
limit. In that case, the battery charging behavior does not 
differ from those of the operation strategy without feed-in 
limitation. Nevertheless, the resulting curtailment losses 
reduce the power output of the PV system. As such, this 
operation strategy can only limit the feed-in power but not 
optimally utilize the PV energy.  

A more advantageous feed-in limitation approach is 
obtained by charging the battery with PV energy that 
exceeds the permitted feed-in limit. For this purpose, it is 
necessary to previously determine the amount of PV energy 
to be shaved through charging the battery by taking 
forecasts about the future PV production and electricity 
consumption into account. The residual battery capacity can 
already be charged in the morning. This forecast-based 
operation strategy mitigates undesired feed-in peaks, but 
does not utilize the entire peak shaving potential of the 
battery system. 

A second forecast-based operation strategy is the 
approach of limiting the feed-in power dynamically. The 
feed-in limit is ideally set each day based on the forecasts 
such that the battery is completely charged with energy that 
exceeds the limit. In this way, the maximum daily feed-in 
power can be minimized and the self-sufficiency is 
optimized. As this forecast-based operation strategy seems 
to be the most promising one, this paper focuses on the 
implementation of the dynamic feed-in limitation. A more 
detailed comparison of different forecast-based operation 
strategies can be found in [1]. 

III. MODELLING OF PV BATTERY SYSTEMS WITH 

FORECAST-BASED OPERATION STRATEGIES 

This section describes the used input data, simulation 
model and control scheme to implement forecast-based 
operation strategies. The procedure of such operation 
strategies can be distinguished into different steps, as shown 
in Fig. 2.  

 

 

Figure 2.  Control scheme of forecast-based operation strategies 

 

In the first step, an optimization is carried out based on 
the current battery´s state of charge and the forecasted 
values. After that, the optimized charging power is corrected 
by a real time correction unit considering differences 
between the forecasted and measured values. Finally, the 
battery system is instructed to operate according to the 
corrected charging power. The components of the control 
scheme as well as the simulation assumptions are described 
in the following subsections. 

A. Measured Input Data 

The simulations are based on measured annual time 
series of the load demand and PV power output. The 1 min 
averaged measurements of the output power of a PV system 
were recorded in 2012. The PV system is located in southern 
Germany next to Munich and is south-east oriented with a 
35° tilt angle. The maximum PV power output is restricted 
to 1 kW/kWp and the annual PV energy yield amounts to 
1150 kWh/kWp. For the load consumption, a minutely 
resolved load profile of a single-family home with 
5300  kWh of annual load demand is used [2].  

B. PV Power and Load Forecasts 

Three different types of PV power forecasts are 
considered in this study (see Fig. 3). Firstly, a commercially 
available forecast product, which was delivered to the 
considered PV system within the period of measurement by 
enercast GmbH. Thus, the time series of the measured PV 
power output correlates with the time series of the forecast 
values. The commercial PV forecast has a 15 h forecast 
horizon with both an update interval as well as a time step 
resolution of 15 min. The second type of PV forecasts is 
derived from historical measurements using the approach of 
persistence; i.e. the PV forecast for the current day is based 
on the measured PV power output time series from the 
preceding day. To ensure comparability between both types 
of PV forecasts, the persistence also has a temporal 
resolution of 15 min and a forecast horizon of 15 h. 
Furthermore, perfect forecasts that exactly match the 
measured values are taken into account, both for the PV 
power output and load demand.  

 
 

Figure 3.  Investigated combinations of different PV and load forecasts 

 

Without
feed-in limitation

Fixed

feed-in limitation
through curtailment

Fixed
feed-in limitation

Battery charge

Grid feed-in

Curtailment

Feed-in limit

 









Max. self-sufficiency

Relieving the grid

Forecast-based

Dynamic

feed-in limitation







Optimization Real time 
correction

Optimal

charge power

Forecast values

Current state of charge



System

Measured values

Corrected

charge power

Perfect
load forecast

Persistence
load forecast

Perfect PV forecast l l

Persistence PV forecast l

Commercial PV forecast l



The approach of persistence is also used to establish the 

real forecasts about the future load demand. As the load 

profile of households often implies a dependency on the 

weekday, the load prediction is based on the mean daily 

load profile of the same weekday during the previous three 

weeks. The time step resolution amounts to 15 min and no 

updates within the day for both persistence forecasts are 

considered. Fig. 3 highlights the different forecast 

combinations which will be analyzed. The persistence PV 

and persistence load forecast are used as the reference in 

this study. 

C. System Model 

As measured and forecasted PV power output are used 
as inputs, no model of the PV system is needed. The 
measured and forecasted time series of the PV power output 
are scaled to 5 kWp of rated PV power. The AC-coupled 
battery system based on lithium-ion batteries has been 
modeled by a simple approach with constant efficiency 
factors [3]. The batteries are modelled with a watt-hour 
efficiency of 95%. Additionally, the bidirectional battery 
inverter is assumed to be constantly 94% efficient. These 
losses result in an overall round-trip efficiency of about 
84%. The state of charge of the battery is restricted to a 
range between 20% and 80% of the nominal battery 
capacity, i.e. the usable battery capacity amounts to 60% of 
the nominal capacity and is set to 5 kWh. As the battery 
capacity is reduced during the useful life, it is assumed that 
on average only 90% of the usable capacity can indeed be 
utilized. The maximum charge and discharge power is 
restricted to 5 kW.  

The system model also depicts the possible energy flows 
between the different system components. Fig. 4 illustrates 
the relevant energy flows of grid-connected PV battery 
systems. The electricity generated from the PV system can 
be used in different ways. Primarily it is directly used to 
supply the electrical demand. The direct use of PV energy 
results from the simultaneity of the PV production and load 
demand. When the current PV power output exceeds the 
load, the available surplus PV power can potentially be 
stored in the battery system for later consumption. If the 
battery is fully charged, the remaining excess PV power will 
be injected into the grid without violating the defined 
maximum feed-in limit. According to the requirements of 
the renewable energy storage program, the stipulated feed-in 
limit is set to 0.6 kW/kWp. To prevent the feed-in power 
from exceeding this threshold value, curtailment of PV 
power is required in the case in which the battery is fully 
charged and the surplus PV power exceeds the limit. 
Throttling the PV power output is realized in practice by 
operating the PV generator out of the maximum power 
point. This way, the exceedance of the stipulated feed-in 
limit can be prevented either by adjusting the battery 
charging power or by curtailing surplus PV power. 

The loads of the household can be supplied through 
different sources and are preferably covered by the 
instantaneous use of PV energy. The battery starts to 
discharge when the PV output is insufficient to satisfy the 
electrical demand of the consumers. As soon as the battery 
is completely discharged, the residual load demand is 
covered by electricity drawn from the grid. Power exchange 
between the battery system and the grid is not taken into 
account in this study. 

 
Figure 4.  Relevant energy flows in grid-connected PV battery systems 

D. Optimization 

The forecast-based operation strategy with a dynamic 
feed-in limitation can be mathematically formulated as a 
linear optimization problem. The linear optimization 
algorithm aims to minimize the feed-in limit such that the 
battery system reaches its maximum possible state of charge 
over the forecast horizon. This is done by taking the 
energetic and technical constraints of the system model into 
account. The optimization computes the optimal battery 
charging power at each time step over the forecast horizon 
based on the remaining free battery capacity. The optimal 
schedule of the battery charging is recalculated every 15 min 
considering possible forecast updates as well as updated 
measurements of the state of charge. Further details of the 
optimization approach are specified in [4]. 

E. Real Time Correction Unit 

In the case of accurate forecasts the optimization results 
can directly be used to control the charging power of the 
battery system. However, due to the inherent variability of 
both PV output and load, deviations between the forecasted 
and measured values are inevitable. To compensate forecast 
errors in real time, a downstream correction unit is required 
to maintain the predetermined feed-in limit. This is 
accomplished by correcting the optimized battery charge 
power PBC,OPT(t) in response to the difference between the 

real and forecasted surplus PV power. The corrected charge 
power PBC(t)  is determined from the current measured 
values of the PV power PPV(t)  and load PL(t)  as well as 
from their respective forecast values PPV,F(t) and PL,F(t) at 

each time step t at which PPV(t) is greater than PL(t). 

PBC(t) = max (

0, P
BC,OPT

(t) 

+(PPV(t) − PL,(t))

−(PPV,F(t) − PL,F(t))

) 


The real time correction unit aims to balance short-term 

forecast errors until the optimized charging schedule is 

updated by repeating the optimization procedure. Thereby, 

the exceedance of the predefined feed-in limit can be 

instantaneously avoided.  
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IV. ENERGETIC ASSESSMENT OF FORECAST-BASED 

OPERATION STRATEGIES 

Based on the assumptions and models described above, 
simulations of a PV battery system considering different 
forecast approaches and operation strategies have been 
performed. In this section, the simulation results are 
assessed from an energetic perspective. 

A. Assessment Criteria 

In order to evaluate the annual operational results, three 

energetic assessment criteria should be defined. The first 

one is the degree of self-sufficiency, which specifies the 

fraction of the total load demand covered by the PV battery 

system. The degree of self-sufficiency d  is obtained by 

dividing the sum of the directly used PV energy EDU and 

the energy discharged from the battery EBD  by the load 

demand EL. 

d = 
EDU + EBD

EL

 

The second evaluation parameter is the self-

consumption rate s , which is equal to the share of PV 

generated electricity EPV that is either directly used EDU or 

stored in the battery EBC. 

s = 
EDU + EBC

EPV

 

Restricting the feed-in power to a stipulated limit can 

lead to curtailment of PV power in order to comply with the 

threshold value. As a result, energy losses due to 

curtailment will occur. The curtailed PV energy  ECT  and 

the curtailment losses l can be determined by subtracting 

the directly used energy EDU, the energy used to charge the 

battery EBC and the energy fed into the grid EGF from the 

total generated PV energy EPV. 

l= 
 ECT

 EPV

 = 
 EPV −  EDU −  EBC − EGF

 EPV

 

B. Assessment Results 

This subsection focuses on the impact of forecast 
inaccuracies on the performance of forecast-based operation 
strategies. Forecast errors can be found either in the load 
forecast or in the PV forecast. As the battery is only charged 
with PV energy that exceeds the load, the resulting 
difference between the PV power forecast and the load 
forecast is decisive. As a result, errors in the projected PV 
power and load demand can also counteract and can 
compensate each other [1]. In general, two different cases in 
terms of forecasting the surplus PV energy can be 
distinguished: 

 Under-forecasting of the surplus PV energy: The 
real surplus PV energy exceeds the predicted value 
caused by too low forecasted PV energy or by too 
high forecasted load. 

 Over-forecasting of the surplus PV energy: Less 
excess PV energy is available than anticipated 
caused by too high forecasted PV energy or too low 
forecasted load.  

Both types of forecast errors have different 
consequences on the operational behavior of forecast-based 
operation strategies. The impact of under-forecasted surplus 
PV energy on the energy flows of a PV battery system 
operated with the dynamic feed-in limitation is depicted in 
the course of one exemplary day in Fig. 5. Besides the 
realized energy flows, also the results of the optimization at 
5:00 am are shown. The optimization is performed using the 
state of charge at this instant of time as well as the 
persistence PV and persistence load forecast of the next 
15 h. According to the predicted time series of the 
differential power between PV and load, the optimization 
algorithm calculates the optimal battery charging sequence 
during the forecast horizon resulting in an initial feed-in 
limit of 2 kW on this day. The realized energy flows 
highlight that the battery starts to charge after the surplus PV 
power exceeds the predefined feed-in limit.  

 

 

 

 

 

  

  
Figure 5.  Forcasted and optimized energy flows at 5:00 am (left) and realized energy flows (right) of a PV battery system with a dynamic feed-in 

limitation based on persistence forecasts in the case that the surplus PV energy is under-forecasted 
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Figure 6.  Forcasted and optimized energy flows at 5:00 am (left) and realized energy flows (right) of a PV battery system with a dynamic feed-in 

limitation based on persistence forecasts in the case that the surplus PV energy is over-forecasted

If the forecasted surplus PV power matches perfectly 
with the measured surplus PV power at each instant of time, 
the feed-in limit will remain constant throughout the day. 
Nevertheless, to maintain the predetermined feed-in limit in 
the case that more surplus PV energy is available than 
expected, more PV energy has to be charged into the battery 
system. Thereby, the under-forecasting of the surplus PV 
energy results in a faster ascending state of charge than 
expected. Thereafter, the remaining free battery capacity is 
inadequate to observe the previously defined feed-in limit. 
In response to this, the feed-in limit is subsequently elevated 
throughout the day by adjusting the optimized charging 
power. After reaching the maximum state of charge, the 
curtailment of surplus PV power is enforced to preserve the 
imposed maximum feed-in limit of 3 kW (0.6 kW/kWp). As 
a result, higher losses due to curtailment of PV energy occur 
on days on which more excess PV energy is available than 
predicted which corresponds to the findings presented in [5]. 

The impact of over-forecasted surplus PV energy on the 
operational behavior of a PV battery system with a dynamic 
feed-in limitation is displayed for an exemplary day in 
Fig. 6. It is evident that the occasional over-forecasted load 
demand partially compensates the significantly over-
forecasted PV output. On this day, an initial maximum feed-
in power of roughly 1 kW is established by the optimization 
subject to the forecasts at 5:00 am. However, it can be 
observed that the real surplus PV energy is significantly 
lower than expected due to prolonged overcast conditions. 
Therefore, the initial feed-in limit is set too high and is only 
slowly diminished due to the expectation of higher future 
PV surpluses. Consequently, this results in a loss of stored 
PV energy, as not the entire surplus PV energy is used to 
reach the maximum possible state of charge on this day. 
Hence, a lower fraction of the surplus PV energy is stored in 
the battery and hence a higher amount of PV energy is 
injected into the grid, compared to the operation supposing 
perfect forecasts. 

The previously analyzed simulation results highlight the 
distinct consequences of the two types of forecast errors on 
the operational behavior on two exemplary days. Fig. 7 
illustrates the impact of forecast errors on the increased 
stored and reduced curtailed PV energy of every day 

obtained by an annual power flow simulation. The 
operational results based on persistence forecasts are 
assessed in comparison to an ideal case that takes perfect 
forecasts into account. This allows to determine changes in 
the stored and curtailed PV energy as a function of the 
difference between the forecasted and measured surplus PV 
energy each day. Negative values of this difference 
correspond to under-forecasted surplus PV energy and 
positive values are equal to over-forecasted. As expected, 
the reductions in the battery charge occur commonly on 
days on which more PV surpluses are forecasted than 
measured. As a reduced stored PV energy increases the 
amount of energy that must be drawn from the grid, besides 
the self-consumption rate, also the degree of self-sufficiency 
is reduced by the over-forecasting of the surplus PV energy. 
In contrast, the amount of curtailed energy shows a distinct 
tendency to be enhanced with an increasing under-
forecasting. This allows to draw the general conclusion that 
the degree of self-sufficiency and self-consumption rate are 
negatively affected by over-forecasted PV surpluses, 
whereas higher curtailment losses are attributable to under-
forecasted PV surpluses. 

 

Figure 7.  Impact of under- and over-forecasted daily surplus PV energy 

on the daily stored and curtailed energy with the dynamic feed-in 
limitation based on persistence forecasts compared to perfect forecasts 
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After figuring out the impact of forecast errors on the 
daily performance, the simulations results of different 
forecast approaches are analyzed on an annual basis. As the 
losses in the self-consumption rate are directly proportional 
to the losses in the degree of self-sufficiency, only the 
annual average values of the degree of self-sufficiency are 
investigated in the following. Fig. 8 displays the annual 
degree of self-sufficiency as well as curtailment losses of 
the dynamic feed-in limitation, applying different PV and 
load forecasts. For purpose of comparison, the performance 
of the conventional operation strategy of fixed feed-in 
limitation through curtailment is also depicted. As this 
operation strategy acts in a way to charge the battery 
system as soon as possible, the highest degree of self-
sufficiency is obtained by this strategy. However, the early 
battery charging results in the highest curtailment losses of 
3.6%, whereas the battery is frequently fully charged before 
the peak has passed.  

In the case that the PV battery system is operated with a 
dynamic feed-in limitation supposing perfect PV and load 
forecasts, the curtailment of PV energy can almost be 
completely avoided. Thus, perfect forecasts allow realizing 
the highest degree of self-sufficiency as well as the lowest 
curtailment losses. Because PV and load forecasts are 
inherently erroneous, the real operational performance 
deviates from this ideal case. Operating the PV battery 
system with a dynamic feed-in limitation integrating perfect 
PV and persistence load forecasts reduces the degree of 
self-sufficiency to 56.3% and increases the curtailment 
losses to 0.5%. The resulting losses are only induced by 
imperfect load forecasts so that these simulation results can 
be considered as the benchmark for different PV forecast 
approaches assuming that the same load forecast is used.  

The annual performance has also been determined 
considering the commercial PV forecast which results in 
1.0% curtailment losses and a self-sufficiency of 56.1%. 
Moreover, it can be seen that the reference simulation based 
on the persistence PV and load forecasts involves the 
lowest degree of self-sufficiency of 55.6% and highest 
curtailment losses of 1.4% for the dynamic feed-in 
limitation. Nevertheless, the differences in the energetic 
performance compared with the commercial PV forecast 
are quite small.  

 

Figure 8.  Assessment of the energetic performance of different operation 

strategies and forecast approaches with regard to the obtained annual 
degree of self-sufficiency and curtailment losses 

In comparison with the conventional operation strategy 

of fixed feed-in limitation through curtailment, the 

advantage of using forecasts consists in reducing the 

curtailment losses; also in the case of error-prone forecasts. 

However, losses in the degree of self-sufficiency incurred 

by forecast errors emerge. In real conditions, the impact of 

the forecast accuracy on the performance is also dependent 

on the implemented control strategy [6]. Moreover, the grid 

feed-in is smoothed more strongly operating a PV battery 

system with a dynamic feed-in limitation, compared to the 

operation strategy of a fixed feed-in limitation [1]. But 
besides that, as the battery charging is delayed by the 

dynamic feed-in limitation, the dwell time at high states of 

charge is reduced which can also enhance the calendar life 

of lithium-ion battery systems [7, 8]. 

V. ECONOMIC ASSESSMENT OF FORECAST-BASED 

OPERATION STRATEGIES 

The performance of different operation strategies and 

forecast approaches are evaluated from the economic 

perspective in this section.  

A. Assessment Criteria 

In order to assess the economics of different operation 

strategies, a cost-benefit analysis concerning the cash flows 

due to the energy exchange with the grid is carried out. This 

is performed by calculating the annual operational costs C 

considering the expenses for the grid supply CGS , 
additionally reduced by the revenues from the grid feed-in 

RGF. The annual costs for electricity supplied by the grid 

CGS  are obtained from the retail electricity price p
GS

, the 

annual load demand EL and the degree of self-sufficiency d. 

The revenues from selling PV energy can be calculated 

using the feed-in tariff p
GF

 and the annual PV energy output 

EPV lowered by the self-consumption rate s and curtailment 

losses l. 

C = CGS − RGF 
 

              = E
L
∙(1−d)∙p

GS
−E

PV
∙(1−s−l)∙p

GF
 



For comparability of different operation strategies, the 

difference in the operational costs CFIXED  and CDYN 

applying a fixed feed-in limitation through curtailment and 

a dynamic feed-in limitation is analyzed, respectively. This 

allows to calculate the saved profit in the annual operational 

costs SDYN  by operating a PV battery system with the 

dynamic feed-in limitation compared to the conventional 

operation strategy.  

SDYN =CFIXED − CDYN (6)

In order to evaluate the economic benefit from 

implementing the different strategies or from purchasing 

external PV forecasts, only the differences in the energetic 
performance of the distinct operation strategies should be 

monetarily assessed.  

B. Assessment Results 

To reveal the present cost reduction potential of the 
dynamic feed-in limitation, the reference cost scenario in 
this study considers the current retail electricity price of 
roughly 0.28 €/kWh and feed-in tariff of 0.12 €/kWh. 
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Figure 9.  Annual profit of the dynamic feed-in limitation taking account 

of the different forecast approaches compared to the fixed feed-in 
limitation through curtailment 

  

 
Figure 10.  Annual profit of the dynamic feed-in limitation with 

persistence forecasts compared to the fixed feed-in limitation through 
curtailment as a function of the feed-in tariff and retail electricity price 

 

Fig. 9 compares the annual savings that can be gained by 
applying the dynamic feed-in limitation based on different 
load and PV forecasts. It is clearly visible that the dynamic 
feed-in limitation realizes a positive benefit in the reference 
scenario compared to the fixed feed-in limitation through 
curtailment, regardless of the considered forecasts. The 
highest annual savings potential of almost 25 € is obtained 
in the ideal case of perfect PV and load forecasts. 
Nevertheless, as forecast errors increase the curtailment 
losses and decrease the self-sufficiency, the annual savings 
are also affected by imperfect forecasts. Thus, the forecast 
errors induced by the persistence load forecast already 
reduce the annual profit to 17 €. This savings gained by the 
perfect PV forecast and persistence load forecast can be 
considered as the maximum possible profit which can be 
obtained by using real PV forecasts. 

The utilization of the commercial PV forecast results in 
annual operational costs between the perfect and persistence 
PV forecast. In the case of persistence PV forecast, the 
annual cost reduction potential is lowered to 5 €. 
Nevertheless, the annual economic advantage of involving 
the commercial PV forecast compared to the persistence PV 
forecast amounts to only 6 €. Because of this, one can 
suppose that it is hard to attain a business case to incorporate 
external PV forecast information into the control of 
residential PV battery systems with forecast-based operation 
strategies. Nevertheless, more precise commercial forecast 
information could enhance the annual economic benefit in 
comparison with the persistence PV forecast to up to 12 € 
for the investigated system configuration. But besides that, 
the difference in the annual operational costs of distinct 
operation strategies depends further on the size of the PV 
system and battery capacity [9]. Consequently, higher 
possible savings by purchasing high-quality external PV 
forecasts can be achieved at larger-sized PV systems.  

Considering these facts, the approach of persistence 
based on historical measurements seems to be an 
encouraging alternative to external PV forecasts. Hence, Fig. 
10 finally highlights the sensitivity of the resulting annual 
profit obtained by the persistence PV and load forecasts in 
the case that the retail electricity price and feed-in tariff 
deviate from the reference cost scenario. In general, higher 
feed-in tariffs increase the economic benefit of the dynamic 

feed-in limitation, as lower curtailment losses are obtained 
compared to a fixed feed-in limitation through curtailment 
(see Fig. 8). Moreover, increasing retail electricity prices 
lower the annual profit of the dynamic feed-in limitation due 
to losses in the degree of self-sufficiency incurred by 
forecast errors. As long as the difference in the operational 
costs is positive, the dynamic feed-in limitation is 
economically more viable than the fixed feed-in limitation 
through curtailment. However, in the case that the cost 
situation in terms of feed-in tariff and retail electricity price 
undercuts the limit of profitability, the annual operational 
costs of the dynamic feed-in limitation are higher. As a 
result, it can be seen that a sufficient remuneration of the 
grid feed-in is decisive for realizing a profitable operation 
with the dynamic feed-in limitation.  

Reducing curtailment losses with forecast-based 
operation strategies is only beneficial in cases in which the 
grid feed-in is sufficiently remunerated. Otherwise curtailing 
surplus PV energy is more practicable to observe a defined 
feed-in limit as no losses in the degree of self-sufficiency 
due to forecast inaccuracies occur. Thus, it can be concluded 
that adequate feed-in tariffs are worthwhile to enhance the 
introduction of more grid-compatible operation strategies for 
PV battery systems. Furthermore, higher savings can be 
achieved by improving the persistence PV forecasts or by 
reducing the maximum feed-in limit in future [10, 11]. 
Additional benefits using the forecast-based operation 
strategies can also be obtained from using them in a way to 
reduce also the peak demand and possible demand charges 
[12]. 

VI. CONCLUSION 

This paper analyzes the performance of operation 
strategies for residential PV battery systems that use load 
and PV forecasts. For the operation strategy with a dynamic 
feed-in limitation the robustness in regard to dealing with 
forecast errors has been demonstrated. Imperfect forecasts 
are compensated through adjustments to the feed-in limit 
during the day depending on whether the surplus PV energy 
is over- or under-forecasted. The performed simulations 
highlight that over-forecasting the daily surplus PV energy 
is negatively affecting the degree of self-sufficiency with 
respect to a perfect forecast, whereas under-forecasting 
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events result in higher curtailment losses. By applying a 
dynamic feed-in limitation instead of a conventional fixed 
feed-in limitation through curtailment, savings in terms of 
the annual operational costs can be achieved at present. 
Nevertheless, only small financial benefits by adding 
commercial PV forecasts instead of persistence PV forecasts 
were identified. Consequently, improvements in the forecast 
accuracy of locally created PV forecasts may render the 
purchase of externally provided PV forecasts in residential 
applications obsolete. In addition, such forecasts based on 
historical measurements seem to be much easier to 
implement compared with external forecast information. In 
this way, operating PV battery systems with forecast-based 
operation strategies can enhance the local use of PV 
generated energy and reduce the magnitude of the feed-in 
peaks. The dynamic feed-in limitation can thus be seen as an 
economically efficient measure to improve the grid 
integration of PV and hence increases the hosting capacity 
of distribution grids for the future PV expansion. 
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