Improved Grid Integration of Residential PV Battery Systems with
Forecast-Based Operation Strategies

Johannes Weniger, Joseph Bergner, Tjarko Tjaden, Johannes Kretzer, Felix Schnorr, Volker Quaschning
HTW Berlin - University of Applied Sciences

12 e b Ca ‘ ﬂ Research questions with regard to PV
it 4 battery systems
10 + What is the impact of different operation
4 strategies on the grid feed-in of several
E ¢ . 5 3 Org?n"i‘;‘a;t spatially dispersed PV battery systems?
£ 8 i » Hambach
= ‘| ¢« Is the grid load increased by PV battery
o} systems that are only optimized for self-
g 6 sufficiency?
c
E » Can a soaring increase of the grid feed-in
T G power of distributed PV battery systems
S without feed-in limitation be expected?
2 + What are the advantages of limiting the feed-in
power dynamically based on forecasts of the
load demand and PV generation onsite?
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